Classes
Plot([isLibrary]) |
Hub for creating data visualizations using pandas, seaborn, and bokeh. |
imhr.data.plot.Plot(isLibrary=False)[source]¶Bases: object
Hub for creating data visualizations using pandas, seaborn, and bokeh.
Methods
Methods
bokeh_calibration(config, df, cxy, event[, …]) |
Create calibration matrix, using pandas and bokeh. |
bokeh_trial(config, df, stim_bounds, …) |
Create single subject trial bokeh plots. |
boxplot(config, df[, path, x, y, title, …]) |
Creates boxplot using seaborn and pandas. |
cooks_plot(config, y, model, path, df) |
Create cooks distance plot plot using seaborn, pandas, and statsmodel. |
corr_matrix(config, df, path, title, method) |
Create correlation matrix using bokeh and pandas. |
density_plot(config, df, title) |
Create density plot (draws kernel density estimate), using seaborn and pandas. |
html([destination, df, raw_data, name, …]) |
Create HTML output. |
logit_plot(config, df, path, param) |
Create logistic regression plot using seaborn and pandas |
onset_diff_plot(config, df, meta, drop, y[, …]) |
Plot onset differences using pandas and seaborn. |
qq_plot(config, y, residuals, path) |
Create probability plot using seaborn, pandas, and rpy2. |
residual_plot(config, y, residuals, path) |
Create probability plot using seaborn, pandas, and rpy2. |
single_subject(config, df, path) |
Create single subject scatterplot using seaborn and pandas. |
bokeh_calibration(config, df, cxy, event[, …]) |
Create calibration matrix, using pandas and bokeh. |
bokeh_trial(config, df, stim_bounds, …) |
Create single subject trial bokeh plots. |
boxplot(config, df[, path, x, y, title, …]) |
Creates boxplot using seaborn and pandas. |
cooks_plot(config, y, model, path, df) |
Create cooks distance plot plot using seaborn, pandas, and statsmodel. |
corr_matrix(config, df, path, title, method) |
Create correlation matrix using bokeh and pandas. |
density_plot(config, df, title) |
Create density plot (draws kernel density estimate), using seaborn and pandas. |
html([destination, df, raw_data, name, …]) |
Create HTML output. |
logit_plot(config, df, path, param) |
Create logistic regression plot using seaborn and pandas |
onset_diff_plot(config, df, meta, drop, y[, …]) |
Plot onset differences using pandas and seaborn. |
qq_plot(config, y, residuals, path) |
Create probability plot using seaborn, pandas, and rpy2. |
residual_plot(config, y, residuals, path) |
Create probability plot using seaborn, pandas, and rpy2. |
single_subject(config, df, path) |
Create single subject scatterplot using seaborn and pandas. |
bokeh_trial(config, df, stim_bounds, roi_bounds, flt)[source]¶Create single subject trial bokeh plots.
| Parameters: |
|
|---|
bokeh_calibration(config, df, cxy, event, monitorSize=[1920, 1080])[source]¶Create calibration matrix, using pandas and bokeh.
| Parameters: |
|
|---|
onset_diff_plot(config, df, meta, drop, y, clip=None)[source]¶Plot onset differences using pandas and seaborn.
| Parameters: |
|
|---|---|
| Returns: |
|
density_plot(config, df, title)[source]¶Create density plot (draws kernel density estimate), using seaborn and pandas.
| Parameters: |
|
|---|---|
| Returns: |
|
corr_matrix(config, df, path, title, method, footnote=None)[source]¶Create correlation matrix using bokeh and pandas.
| Parameters: | |
|---|---|
| Returns: |
|
single_subject(config, df, path)[source]¶Create single subject scatterplot using seaborn and pandas.
| Parameters: |
|
|---|---|
| Returns: |
|
boxplot(config, df, path=None, x=None, y=None, title=None, plots=None, cat='analysis')[source]¶Creates boxplot using seaborn and pandas.
| Parameters: |
|---|
cooks_plot(config, y, model, path, df)[source]¶Create cooks distance plot plot using seaborn, pandas, and statsmodel.
| Parameters: |
|
|---|---|
| Returns: |
|
residual_plot(config, y, residuals, path)[source]¶Create probability plot using seaborn, pandas, and rpy2.
| Parameters: |
|
|---|---|
| Returns: |
|
qq_plot(config, y, residuals, path)[source]¶Create probability plot using seaborn, pandas, and rpy2.
| Parameters: |
|
|---|---|
| Returns: |
|
logit_plot(config, df, path, param)[source]¶Create logistic regression plot using seaborn and pandas
| Parameters: |
|
|---|---|
| Returns: |
|
html(destination=None, df=None, raw_data=None, name=None, path=None, plots=None, source=None, title=None, intro=None, footnote=None, script='', **kwargs)[source]¶Create HTML output.
| Parameters: |
|
||||||
|---|---|---|---|---|---|---|---|
| Returns: |
|