imhr.eyetracking._roi

@purpose: Generate regions of interest that can be used for data processing and analysis.
@date: Created on Sat May 1 15:12:38 2019
@author: Semeon Risom

Classes

ROI([isMultiprocessing, detection, …]) Generate regions of interest that can be used for data processing and analysis.
class imhr.eyetracking._roi.ROI(isMultiprocessing=False, detection='manual', image_path=None, output_path=None, metadata_source=None, roi_format='both', shape='box', roicolumn='roi', uuid=None, filetype='psd', **kwargs)[source]

Bases: object

Generate regions of interest that can be used for data processing and analysis.

Methods

Methods

draw_contours(filepath[, img]) [summary]
export_data(df, path, filename[, uuid, …]) [summary]
extract_contours(image, imagename, roiname) [summary]
extract_metadata(imagename, imgtype, layer) Extract metadata for each region of interest.
finished(df[, errors]) Process bounds for all images.
format_contours(imagename, metadata, …) [summary]
format_image([image, imgtype, isRaw, …]) Resize image and reposition image, relative to screensize.
haarcascade(directory[, core, queue]) [summary]
manual_detection(directory[, core, queue]) [summary]
process() [summary]
draw_contours(filepath[, img]) [summary]
export_data(df, path, filename[, uuid, …]) [summary]
extract_contours(image, imagename, roiname) [summary]
extract_metadata(imagename, imgtype, layer) Extract metadata for each region of interest.
finished(df[, errors]) Process bounds for all images.
format_contours(imagename, metadata, …) [summary]
format_image([image, imgtype, isRaw, …]) Resize image and reposition image, relative to screensize.
haarcascade(directory[, core, queue]) [summary]
manual_detection(directory[, core, queue]) [summary]
process() [summary]
classmethod extract_metadata(imagename, imgtype, layer)[source]

Extract metadata for each region of interest.

Parameters:
imagename : [type]

[description]

imgtype : [type]

[description]

layer : [type]

[description]

Returns:
[type]

[description]

[type]

[description]

classmethod format_image(image=None, imgtype='psd', isRaw=False, isPreprocessed=False, isNormal=False, isHaar=False)[source]

Resize image and reposition image, relative to screensize.

Parameters:
IMG : None or

Can be either: psd_tools.PSDImage Photoshop PSD/PSB file object. The file should include one layer for each region of interest, by default None

imgtype : str {‘psd’,’dcm’,’tiff’, ‘bitmap’}

Image type.

isRaw : None or ###, optional

If True, the image will be returned without resizing or placed on top of a background image. Default is False.

isPreprocessed : None or ###, optional

If True, the image will be returned with resizing and placed on top of a background image. Default is False.

Attributes:
image : PIL.Image.Image

PIL image object class.

Returns:
image, background : PIL.Image.Image

PIL image object class.

classmethod extract_contours(image, imagename, roiname)[source]

[summary]

Parameters:
image : [type]

[description]

imagename : [type]

[description]

roiname : [type]

[description]

Returns:
[type]

[description]

Raises:
Exception

[description]

Exception

[description]

classmethod format_contours(imagename, metadata, roiname, roinumber, bounds, coords)[source]

[summary]

Parameters:
imagename : [type]

[description]

metadata : [type]

[description]

roiname : [type]

[description]

roinumber : [type]

[description]

roilabel : [type]

[description]

bounds_ : [type]

[description]

contours_ : [type]

[description]

Returns:
[type]

[description]

[type]

[description]

Raises:
Exception

[description]

classmethod draw_contours(filepath, img=None)[source]

[summary]

Parameters:
filepath : [type]

[description]

data : [type]

[description]

fig : [type]

[description]

source : str, optional

[description], by default ‘bounds’

classmethod export_data(df, path, filename, uuid=None, newcolumn=None, level='image')[source]

[summary]

Parameters:
df : [type]

Bounds.

path : [type]

[description]

filename : [type]

[description]

uuid : [type], optional

[description], by default None

newcolumn : [type], optional

[description], by default None

nested : string {image,`all`}

Nested order, either image or all. Default is image.

Returns:
[type]

[description]

classmethod manual_detection(directory, core=0, queue=None)[source]

[summary]

Parameters:
directory : list

[description]

core : int

(if isMultiprocessing) Core used for this function. Default is 0.

queue : queue.Queue

Constructor for a multiprocessing ‘first-in, first-out’ queue. Note: Queues are thread and process safe.

Returns:
[type]

[description]

classmethod haarcascade(directory, core=0, queue=None)[source]

[summary]

Parameters:
directory : [type]

[description]

core : int, optional

[description], by default 0

queue : [type], optional

[description], by default None

Returns:
[type]

[description]

Raises:
Exception

[description]

classmethod process()[source]

[summary]

Returns:
[type]

[description]

classmethod finished(df, errors=None)[source]

Process bounds for all images.

Parameters:
df : [type]

[description]

errors : [type], optional

[description], by default None