imhr.r33._nslr_hmm

@purpose: Eyetracking classification Module.
@date: Created on Sat May 1 15:12:38 2019
@author: Semeon Risom

Classes

ObservationModel(dists) Include this - Semeon

Functions

gaze_observation_model() Include this - Semeon
gaze_transition_model() Include this - Semeon
safelog(x) Include this - Semeon
viterbi(initial_probs, transition_probs, …) Include this - Semeon
forward_backward(transition_probs, observations) Include this - Semeon
dataset_features(data, \*\*nslrargs)
transition_estimates(obs, trans, forward, …)
reestimate_observations_baum_welch((sessions) Include this - Semeon
reestimate_observations_viterbi_robust((sessions) Include this - Semeon
segment_features(segments[, outliers]) Include this - Semeon
classify_segments((segments[, …]) Include this - Semeon
classify_gaze(ts, xs, \*\*kwargs) Include this - Semeon
class imhr.r33._nslr_hmm.ObservationModel(dists)[source]

Bases: object

Include this - Semeon

Methods

Methods

classify(self, d) Include this - Semeon
dist(self, cls) Include this - Semeon
liks(self, d) Include this - Semeon
classify(self, d) Include this - Semeon
dist(self, cls) Include this - Semeon
liks(self, d) Include this - Semeon
liks(self, d)[source]

Include this - Semeon

classify(self, d)[source]

Include this - Semeon

dist(self, cls)[source]

Include this - Semeon

imhr.r33._nslr_hmm.gaze_observation_model()[source]

Include this - Semeon

imhr.r33._nslr_hmm.gaze_transition_model()[source]

Include this - Semeon

imhr.r33._nslr_hmm.safelog(x)[source]

Include this - Semeon

imhr.r33._nslr_hmm.viterbi(initial_probs, transition_probs, emissions)[source]

Include this - Semeon

imhr.r33._nslr_hmm.forward_backward(transition_probs, observations, initial_probs=None)[source]

Include this - Semeon

imhr.r33._nslr_hmm.dataset_features(data, **nslrargs)[source]
imhr.r33._nslr_hmm.transition_estimates(obs, trans, forward, backward)[source]
reestimate_observations_baum_welch(sessions, transition_probs=array([[0.4 , 0.4 , 0. , 0.2 ],
[0.25 , 0.25 , 0.25 , 0.25 ],
[0.33333333, 0. , 0.33333333, 0.33333333],
[0.2 , 0.4 , 0. , 0.4 ]]), observation_model=<imhr.r33._nslr_hmm.ObservationModel object at 0x1a2c452978>, initial_probs=None, estimate_observation_model=True, estimate_transition_model=True, n_iterations=30, plot_process=False)

Include this - Semeon

reestimate_observations_viterbi_robust(sessions, transition_probs=array([[0.4 , 0.4 , 0. , 0.2 ],
[0.25 , 0.25 , 0.25 , 0.25 ],
[0.33333333, 0. , 0.33333333, 0.33333333],
[0.2 , 0.4 , 0. , 0.4 ]]), observation_model=<imhr.r33._nslr_hmm.ObservationModel object at 0x1a2c452978>, initial_probs=None, estimate_observation_model=True, estimate_transition_model=True, n_iterations=30, plot_process=False)

Include this - Semeon

imhr.r33._nslr_hmm.segment_features(segments, outliers=None)[source]

Include this - Semeon

classify_segments(segments, observation_model=<imhr.r33._nslr_hmm.ObservationModel object at 0x1a2c452978>, transition_model=array([[0.4 , 0.4 , 0. , 0.2 ],
[0.25 , 0.25 , 0.25 , 0.25 ],
[0.33333333, 0. , 0.33333333, 0.33333333],
[0.2 , 0.4 , 0. , 0.4 ]]), initial_probabilities=None)

Include this - Semeon

imhr.r33._nslr_hmm.classify_gaze(ts, xs, **kwargs)[source]

Include this - Semeon